
Voronoi Diagrams and Delaunay Triangulations

Steve Oudot

MPRI — Computational Geometry and Topology

(steve.oudot@inria.fr)

(slides courtesy of O. Devillers for the most part)

Outline

1. Definitions and examples

2. Structral properties and applications

3. Size

4. Construction

5. Generalizations

Definitions

looking for nearest neighbor

looking for nearest neighbor

pi

Vi

Vi := {q ∈ Rd | ∥q − pi∥ ≤ ∥q − pj∥ ∀j}

Voronoi diagram of {p1, · · · , pn} ⊂ Rd

Voronoi

faces of the Voronoi diagram

Voronoi

faces of the Voronoi diagram

Voronoi

faces of the Voronoi diagram

Voronoi

faces of the Voronoi diagram

Voronoi is everywhere

Voronoi

Empty sphere property

Voronoi

Delaunay

Nerve: {p0, · · · , pk} ∈ Del(P) ⇔ V0 ∩ · · · ∩ Vk ̸= ∅

Voronoi

Delaunay

Voronoi ↔ geometry Delaunay ↔ connectivity (nerve)

Geometric simplicial complexes

vertex set: V = {v0, v1, . . . , vn−1} ⊂ Rd

k-simplex: σ = Conv{vi0 , vi1 , · · · , vik}

inclusion property (τ face of σ):

σ ∈ K and V (τ) ⊆ V (σ) =⇒ τ ∈ K

intersection property:

σ1, σ2 ∈ K and σ1 ∩ σ2 ̸= ∅ =⇒
σ1 ∩ σ2 ∈ K and is a face of both

0-simplex 1-simplex 2-simplex 3-simplex

(vertex) (edge) (triangle) (tetrahedron)

invalid simplicial complex

valid simplicial complex

Geometric simplicial complexes

vertex set: V = {v0, v1, . . . , vn−1} ⊂ Rd

k-simplex: σ = Conv{vi0 , vi1 , · · · , vik}

inclusion property (τ face of σ):

σ ∈ K and V (τ) ⊆ V (σ) =⇒ τ ∈ K

intersection property:

σ1, σ2 ∈ K and σ1 ∩ σ2 ̸= ∅ =⇒
σ1 ∩ σ2 ∈ K and is a face of both

triangulation of P :

simplicial complex T with vertex
set P such that

⋃
σ∈T σ = ConvP

invalid triangulation of P

P

valid triangulation of P

P

x⋆ = (x1, · · · , xd,
∑d

i=1 x
2
i)

P : xd+1 =
∑d

i=1 x
2
i

point / sphere lifting

Rd x = (x1, · · · , xd)

commencer par parler de l’hyperplan, puis de sa projection

Σ : x2 − 2x · (−α1

2 , · · · , −αd

2) + (−α1

2 , · · · , −αd

2)2 = β + (−α1

2 , · · · , −αd

2)2

Σ∗ :
∑d

i=1 αixi + xd+1 = β

point / sphere lifting

Rd

x ∈ Σ

x⋆ ∈ Σ∗

point / sphere lifting

Rd

x ∈ interior(Σ)

x⋆ below Σ∗

point / sphere lifting

Rd

x ∈ exterior(Σ)

x⋆ above Σ∗

point / sphere lifting

Rd

side-of-hyperplane predicate

side-of-sphere predicate

point / sphere lifting

Rd

point / sphere lifting

Rd

Lower CH

Delaunay

⇒ Delaunay is generically a triangulation (not an abstract complex)

Basic properties and applications

nearest neighbor graph

p

q
q nearest neighbor of p
⇒ pq Delaunay edge

nearest neighbor graph

k nearest neighbors

query point

k − 1 nearest neighbors

kth nearest neighbor

k nearest neighbors

query point

k − 1 nearest neighbors

kth nearest neighbor

Minimum Spanning Tree

p q

Minimum Spanning Tree

p q

x
y

∀[pq] ∈ A, ∥p− q∥ = min{∥x− y∥ | x ∈ Ap, y ∈ Aq}

Minimum Spanning Tree

p q

Minimum Spanning Tree

Largest empty circle (centered in the convex hull)

Largest empty circle (centered in the convex hull)

Applications

Databases, AI (NN-search)

Mesh generation

Applications

Databases, AI

Mesh generation

Reconstruction

Applications

Databases, AI

Mesh generation

Reconstruction

Path planning

Applications

Databases, AI

Mesh generation

Reconstruction

Path planning

and many more

Applications

(e.g. texture synthesis)

Databases, AI

Properties specific

to 2D Delaunay

Delaunay maximizes the smallest angle

Delaunay maximizes the smallest angle

Delaunay maximizes the smallest angle

... but the converse is false

Delaunay maximizes the smallest angle

Delaunay maximizes the sequence of angles in lexicographic order

Local optimality vs global optimality

highlighted triangle is only locally Delaunay

Theorem

Locally Delaunay everywhere

Globally Delaunay

⇐⇒

Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0

Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0

Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0
t1

Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0
t1

Proof:

Let t0 be locally Delaunay, but not globally Delaunay

v

Let v ∈ disk(t) (v /∈ t)

t0
t1

Proof:

Let t0 be locally Delaunay, but not globally Delaunay

Since ∃ finitely many triangles, at some point v is a vertex of ti

v

Let v ∈ disk(t) (v /∈ t)

t0
t1

t2

Local optimality and smallest angle

Case of 4 points

Lemma:
For any 4 points in convex position,
Delaunay ⇐⇒ smallest angle maximized

Local optimality and smallest angle

Case of 4 points

δ

Let δ be the smallest angle

Local optimality and smallest angle

Case of 4 points

p
q

r
s

δ

Let δ be the smallest angle

≤ δ iff
r /∈ disk(pqs)

Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

→ output is (globally) Delaunay

→ proof: each flip increases smallest angle in quad ⇒ cannot be undone

Algorithm for making a triangulation Delaunay

while ∃ pairs of adjacent triangles that are not locally Delaunay

pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

→ output is (globally) Delaunay

→ proof: each flip increases smallest angle in quad ⇒ cannot be undone

does not work in higher dimensions (several types of flips possible)

Theorem
Delaunay ⇒ maximum smallest angle

Local optimality and smallest angle

Theorem
Delaunay ⇒ maximum smallest angle

Let T triangulationProof:

Local optimality and smallest angle

Theorem
Delaunay ⇒ maximum smallest angle

Let T triangulation

Apply flipping algorithm on T

→ output is Delaunay

Proof:

Local optimality and smallest angle

Theorem
Delaunay ⇒ maximum smallest angle

Let T triangulation

Apply flipping algorithm on T

→ output is Delaunay

Each flip increases angles within quadrangle

Proof:

Local optimality and smallest angle

→ output has larger smallest angle

Size

Euler formula

f : number of facets (except ∞)

e: number of edges

v: number of vertices

f − e + v = 1

Euler formula

f : number of facets (except ∞)

e: number of edges

v: number of vertices

1− 3 + 3 = 1

f − e + v = 1

Euler formula

f : number of facets (except ∞)

e: number of edges

v: number of vertices

f − e + v = 1

+1− 2 + 1 = +0

number of oriented edges

in a triangulation: 2e = 3f + k

k: size of ∞ facet

Euler formula

f − e+ v = 1

Triangulation

2e = 3f + k

f = 2v − 2− k = O(v)

e = 3v − 3− k = O(v)

Euler formula

f − e+ v = 1

Triangulation

2e = 3f + k

f = 2v − 2− k = O(v)

e = 3v − 3− k = O(v)

2D Delaunay has linear size

3D Delaunay can have quadratic size

point / sphere lifting

Rd

Lower CH

Delaunay

Size of Delaunay in Rd

• By point/sphere lifting, |Del(P)| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

Size of Delaunay in Rd

• By point/sphere lifting, |Del(P)| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

• When d is even, point set P on moments curve t 7→ (t, t2, t3, · · · , td) yields
|Del(P)| ≥ |Conv(P)| = Ω(|P |⌊ d

2
⌋) = Ω(|P |⌈ d

2
⌉).

Size of Delaunay in Rd

• By point/sphere lifting, |Del(P)| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

• When d is even, point set P on moments curve t 7→ (t, t2, t3, · · · , td) yields
|Del(P)| ≥ |Conv(P)| = Ω(|P |⌊ d

2
⌋) = Ω(|P |⌈ d

2
⌉).

• When d is odd, take point set P ∗ on trigonometric curve t 7→
2

d+1
(cos t, sin t, cos 2t, sin 2t, · · · , cos d+1

2
t, sin d+1

2
t) ∈ Sd ⊂ Rd+1 yields

|Conv(P ∗)| = Ω(|P ∗|⌊ d+1
2

⌋) = Ω(|P ∗|⌈ d
2
⌉).

→ map P ∗ onto unit paraboloid via radial projection, then down to P ⊂ Rd.

Size of Delaunay in Rd

• By point/sphere lifting, |Del(P)| = |Conv(P ∗)| = O(|P |⌊ d+1
2

⌋) = O(|P |⌈ d
2
⌉)

• When d is even, point set P on moments curve t 7→ (t, t2, t3, · · · , td) yields
|Del(P)| ≥ |Conv(P)| = Ω(|P |⌊ d

2
⌋) = Ω(|P |⌈ d

2
⌉).

• When d is odd, take point set P ∗ on trigonometric curve t 7→
2

d+1
(cos t, sin t, cos 2t, sin 2t, · · · , cos d+1

2
t, sin d+1

2
t) ∈ Sd ⊂ Rd+1 yields

|Conv(P ∗)| = Ω(|P ∗|⌊ d+1
2

⌋) = Ω(|P ∗|⌈ d
2
⌉).

→ map P ∗ onto unit paraboloid via radial projection, then down to P ⊂ Rd.

Size of Delaunay of n points in Rd: Θ(n⌈d2⌉)

Computing Delaunay

the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

→ direct extension of Graham’s algorithm ([H.-P. Seidel]): O(n⌈ d+1
2 ⌉ + n log n)

→ randomized incremental algorithm ([Clarkson, Shor]): exp. O(n⌈ d
2 ⌉ + n log n)

→ de-randomized incremental algorithm ([Chazelle]): O(n⌈ d
2 ⌉ + n log n)

in fact this algorithm simulates the incremental convex hull algorithm in Rd+1 directly in
Rd

the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

→ O(n⌈ d+1
2 ⌉ + n log n) with deterministic point insertion order

→ exp. O(n⌈ d
2 ⌉ + n log n) with randomized point insertion order

the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

→ optimal O(n log n) in the plane and O(n2) in R3

→ only in the plane or in 3-space

the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

4. Plane-sweep algorithm [Fortune]

→ in the plane only

→ computes Voronoi diagram

→ optimal O(n log n) time

the message is: one can use standard, worst-case optimal algorithms for convex hull com-
putation to compute the Delaunay triangulation optimally

Computing the Delaunay triangulation

1. Lift P to Rd+1 and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

4. Plane-sweep algorithm [Fortune]

(today)

Computing Delaunay in the Plane

Lower bound

Lower bound for Delaunay

Delaunay can be used to sort numbers

Lower bound for Delaunay

Delaunay can be used to sort numbers

Take an instance of sort

Assume one can compute Delaunay in R2

Use Delaunay to solve this instance of sort

Let x1, x2, . . . , xn ∈ R, to be sorted

x1

Lower bound for Delaunay

Let x1, x2, . . . , xn ∈ R, to be sorted

x1

(x1, x
2
1)

(x1, x
2
1), . . . , (xn, x

2
n) n points

Lower bound for Delaunay

Let x1, x2, . . . , xn ∈ R, to be sorted

x1

(x1, x
2
1), . . . , (xn, x

2
n) n points

Delaunay

→ order in x

Lower bound for Delaunay

Let x1, x2, . . . , xn ∈ R, to be sorted

x1

(x1, x
2
1), . . . , (xn, x

2
n) n points

Delaunay

→ order in x

O(n)

O(n)

f(n)

O(n) + f(n) ∈ Ω(n log n)

Lower bound for Delaunay

⇒ f (n) ∈ Ω(n log n)

Lower bound for Delaunay

Computing Delaunay

Incremental algorithm

Algorithm overview

Algorithm overview

p

• Find triangles in conflict with pAlgorithm overview

p

• Find triangles in conflict with pAlgorithm overview

p

• Find triangles in conflict with pAlgorithm overview
• Delete triangles in conflict

p

• Find triangles in conflict with pAlgorithm overview
• Delete triangles in conflict

• Re-triangulate hole w.r.t. p

p

Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)

p

x
∀x ∈ conflict zone, all triangles inter-
sected by [p, x] are in conflict with p

(same proof as for locally Del. ⇒ globally Del.)

Why it works

→ can be computed by a traversal in the dual graph from some σ ∋ p

Property 1: the conflict zone is starred with respect to p (hence connected)

→ can be re-triangulated by join products p ∗ σ for each σ on its boundary

Why it works

Vor(p) eats out parts of the other Voronoi regions

Property 3: every new Delaunay simplex is incident to p

→ re-triangulation by join products with p is Delaunay

Complexity analysis

n points ⇒ n insertions, each of which is composed of:

• locate: O(n) naive, O(n1/d) with random line walk, O(log n) with hierarchy.

• bfs in conflict zone: O(di), where di is the number of deleted cells at i-th iteration.

• star conflict zone: O(ci), where ci is the number of created cells at i-th iteration.

⇒ total complexity = O(n log n+
∑n

i=1(ci + di)

depending on the application (e.g. mesh generation), it may not always be possible to insert
the points in a random order

Complexity analysis

n points ⇒ n insertions, each of which is composed of:

• locate: O(n) naive, O(n1/d) with random line walk, O(log n) with hierarchy.

• bfs in conflict zone: O(di), where di is the number of deleted cells at i-th iteration.

• star conflict zone: O(ci), where ci is the number of created cells at i-th iteration.

⇒ total complexity = O(n log n+ n⌈d+1
2 ⌉)

(sub-optimal in even dimensions only)

boundary of conflicts zone is homeomorphic to a (d− 1)-sphere since the conflict zone is

starred w.r.t. p ⇒ ci, di = O(i⌈
d−1
2 ⌉) by a variant of Upper Bound Theorem [Stanley 75].

(can be improved to exp. O(n log n+ n⌈ d
2 ⌉) if random insertion order can be used)

⇒ total complexity = O(n log n+
∑n

i=1(ci + di)

The Guibas/Stolfi variant in 2D
• Locate point in triangulation

The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

• Apply flipping algorithm

The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

• Apply flipping algorithm

The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

• Apply flipping algorithm

The Guibas/Stolfi variant in 2D
• Locate point in triangulation

• Star triangle

• Apply flipping algorithm

Computing Delaunay
triangulations in the plane

Division – Fusion

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74–123, April 1985

Division-Fusion

Classical approach example: sort

Problem of size n

→ fusion

→ division into 2 pbs of size O (n/2)

→ recursive call on sub-problems

Division-Fusion

Classical approach example: sort

Problem of size n

→ fusion

→ division into 2 pbs of size O (n/2)

→ recursive call on sub-problems

O(n)

2 f
(
n
2

)
O(n)

Division-Fusion

Classical approach example: sort

Problem of size n

→ fusion

→ division into 2 pbs of size O (n/2)

→ recursive call on sub-problems

f (n) = O(n)+2f
(
n
2

)
= O(n log n)

O(n)

2 f
(
n
2

)
O(n)

Division

Division

Division

Division

Fusion
Division

Fusion
Division

Fusion
Division

Fusion
Division

Fusion
Division

Division

Division

Division

Division

Division
Fusion

Division
Fusion

Division
Fusion

Division
Fusion

Division
Fusion

Division

Division

sort in x

Division

store all the medians in an array

sort in x

Division

store all the medians in an array

sort in x

O(n log n)

queries in O(1)

Fusion

Monochromatic triangles to be deleted

Fusion

Bi-chromatic triangles to be construced

Fusion

Constructing bi-chromatic edges from top to bottom

next edge?

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

rising bubble: set of circumscribed circles

Constructing bi-chromatic edges from top to bottom

next edge?

r

b

rnext

first red vertex crossed by pencil of circles

bnext

first blue vertex crossed by pencil of circles

Only the first circle found in the pencil is Delaunay

r

b

first red vertex crossed by set of circles

r1

r2

r2 ∈ circle(b, r, r1)

Always look at first neighbor of r ccw

r

b

first red vertex crossed by set of circles

r1

r2

r3

r3 ∈ circle(b, r, r2)

Always look at first neighbor of r ccw

r
r4

b

first red vertex crossed by set of circles

r1

r2

r3

r4 ∈ circle(b, r, r3)

Always look at first neighbor of r ccw

r
r4

b

first red vertex crossed by set of circles

r1

r2

r3

r5

r5 ̸∈ circle(b, r, r4)

Always look at first neighbor of r ccw

r
r4

b

first red vertex crossed by set of circles

r1

r2

r3

r5
= rnext

r5 ̸∈ circle(b, r, r4)

∀red, red ̸∈ circle(b, r, r4) (black disks are Delaunay for red set)

r

b

first blue vertex crossed by set of circles

b2

b2 ∈ circle(b, r, b1)

rnext

b1
Always look at first neighbor of b cw

r

b

first blue vertex crossed by set of circles

b2

b3

b3 ̸∈ circle(b, r, b2)

rnext

b1

r

b

first blue vertex crossed by set of circles

b2

b3

bnext =

b3 ̸∈ circle(b, r, b2)
∀blue, blue ̸∈ circle(b, r, b2)

rnext

b1

r

b

bnext

rnextno point

r

b

bnext

rnextno red

r

b

bnext

rnextno blue

r

b

bnext

rnextno redno blueno point

r

b

r

b
rnext

r

b

bnext

r
b

rnext

r
b

r
b

bnext

r

b

rnext

r

b

r

b

r

b

bnext

r
b

r

b

Complexity of Fusion

At each step of the search for rnext

A red edge is deleted

At each step of the search for bnext

A blue edge is deleted

After the choice between rnext and bnext

A black edge is created

Complexity of Fusion

Complexity ≤
+♯ blue edges
+♯ black edges

♯ red edges

Complexity of Fusion

Complexity ≤
+♯ blue edges
+♯ black edges

♯ red edges

≤ 3n2 + 3n2 + 3n = O(n)

each colored triangulation has ≤ 3k edges, where k is the size of the subset of vertices

the black edges are Delaunay ⇒ there are at most 3n of them

Overall Complexity

Fusion = O(k) on sub-problem of size k

Division-Fusion =⇒ O(n log n)

Division = O(k) on sub-problem of size k

+ O(n log n) preprocessing

Generalizations

Voronoi diagram

Q Nearest neighbor of q among S

Voronoi diagram

Q Nearest neighbor of q among S

Change

ambient space (for q)

IR2 IR3 IRd

Voronoi diagram

Q Nearest neighbor of q among S

Change

metrics

Euclidean L2

L1, L∞, Lp

hyperbolic

additive weights

multiplicative weights

Voronoi diagram

Q Nearest neighbor of q among S

Change

universal set ⊃ S

points of IRd segments of IRd

spheres of IRd

Exotic metrics

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

query

Norm L∞: max(|x|, |y|)

bisector

Norm L∞: max(|x|, |y|)

bisector

Norm L∞: max(|x|, |y|)

Norm L∞: max(|x|, |y|)

Norm L∞: max(|x|, |y|)

Norm L∞: max(|x|, |y|)

Norm L∞: max(|x|, |y|)

Voronoi diagram

Norm L∞: max(|x|, |y|)

Voronoi diagram

Norm L∞: max(|x|, |y|)

Delaunay

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

multiplicatively-weighted points

1

2

circular bisector

multiplicatively-weighted points

1

2

circular bisector

1 2

multiplicatively-weighted points

1 2

multiplicatively-weighted points

1 2

disconnected cell

multiplicatively-weighted points

multiplicatively-weighted points

multiplicatively-weighted points

quadratic size

multiplicatively-weighted points

Voronoi diagram of segments

Voronoi diagram of segments

Q nearest segment

Voronoi diagram of segments

parabolic bisector

Voronoi diagram of segments

angle bisector

Voronoi diagram of segments

points bisector

Voronoi diagram of segments

Voronoi diagram

Voronoi diagram of segments

Voronoi diagram of segments

Voronoi diagram of segments

Dual complex

