MPRI — Computational Geometry and Topology

Voronoi Diagrams and Delaunay Triangulations

Steve Oudot

(steve.oudot@inria.fr)

(slides courtesy of O. Devillers for the most part)

Outline

- 1. Definitions and examples
- 2. Structral properties and applications
- 3. Size
- 4. Construction
- 5. Generalizations

Definitions

looking for nearest neighbor

looking for nearest neighbor

Voronoi is everywhere

Geometric simplicial complexes

vertex set:
$$V = \{v_0, v_1, \dots, v_{n-1}\} \subset \mathbb{R}^d$$

k-simplex: $\sigma = \operatorname{Conv}\{v_{i_0}, v_{i_1}, \cdots, v_{i_k}\}$

inclusion property (τ *face* of σ):

 $\sigma \in K \text{ and } V(\tau) \subseteq V(\sigma) \Longrightarrow \tau \in K$

intersection property:

 $\sigma_1, \sigma_2 \in K \text{ and } \sigma_1 \cap \sigma_2 \neq \emptyset \Longrightarrow$ $\sigma_1 \cap \sigma_2 \in K \text{ and is a face of both}$

invalid simplicial complex

valid simplicial complex

Geometric simplicial complexes

vertex set:
$$V = \{v_0, v_1, \dots, v_{n-1}\} \subset \mathbb{R}^d$$

k-simplex: $\sigma = \operatorname{Conv}\{v_{i_0}, v_{i_1}, \cdots, v_{i_k}\}$

inclusion property (τ *face* of σ):

$$\sigma \in K \text{ and } V(\tau) \subseteq V(\sigma) \Longrightarrow \tau \in K$$

intersection property:

 $\sigma_1, \sigma_2 \in K \text{ and } \sigma_1 \cap \sigma_2 \neq \emptyset \Longrightarrow$ $\sigma_1 \cap \sigma_2 \in K \text{ and is a face of both}$

triangulation of P:

simplicial complex T with vertex set P such that $\bigcup_{\sigma \in T} \sigma = \operatorname{Conv} P$

invalid triangulation of ${\cal P}$

 \Rightarrow Delaunay is generically a triangulation (not an abstract complex)

Basic properties and applications

nearest neighbor graph

q nearest neighbor of p $\Rightarrow pq$ Delaunay edge

nearest neighbor graph

Largest empty circle (centered in the convex hull)

Applications Databases, Al Mesh generation

Applications

Databases, AI Mesh generation Reconstruction

Applications

Databases, AI Mesh generation Reconstruction

Path planning

Applications

Databases, AI Mesh generation Reconstruction Path planning and many more (e.g. texture synthesis)

Properties specific

to 2D Delaunay

... but the converse is false

Delaunay maximizes the sequence of angles in lexicographic order

Local optimality vs global optimality

highlighted triangle is only locally Delaunay

Locally Delaunay everywhere

Globally Delaunay

Let t_0 be locally Delaunay, but not globally Delaunay

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in \operatorname{disk}(t)$ $(v \notin t)$

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in \operatorname{disk}(t)$ $(v \notin t)$

 t_1

 t_0

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in \operatorname{disk}(t)$ $(v \notin t)$

 t_1

 t_0

Let t_0 be locally Delaunay, but not globally Delaunay Let $v \in \operatorname{disk}(t)$ $(v \notin t)$ t_0 t_1

Since \exists finitely many triangles, at some point v is a vertex of t_i

Local optimality and smallest angle Case of 4 points

Lemma: For any 4 points in convex position, Delaunay \iff smallest angle maximized Local optimality and smallest angle Case of 4 points

Let δ be the smallest angle

Local optimality and smallest angle Case of 4 points

Algorithm for making a triangulation Delaunay

while \exists pairs of adjacent triangles that are not locally Delaunay pick an arbitrary pair and flip common edge

Algorithm for making a triangulation Delaunay

while \exists pairs of adjacent triangles that are not locally Delaunay pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

- \rightarrow proof: each flip increases smallest angle in quad \Rightarrow cannot be undone
- \rightarrow output is (globally) Delaunay

Algorithm for making a triangulation Delaunay

while \exists pairs of adjacent triangles that are not locally Delaunay pick an arbitrary pair and flip common edge

Theorem: whatever the choice of order on pairs, the algorithm terminates

- \rightarrow proof: each flip increases smallest angle in quad \Rightarrow cannot be undone
- \rightarrow output is (globally) Delaunay

does not work in higher dimensions (several types of flips possible)

Theorem Delaunay \Rightarrow maximum smallest angle

Theorem Delaunay \Rightarrow maximum smallest angle

Proof: Let T triangulation

Theorem Delaunay \Rightarrow maximum smallest angle **Proof:** Let T triangulation Apply flipping algorithm on T \rightarrow output is Delaunay

Theorem Delaunay \Rightarrow maximum smallest angle **Proof:** Let T triangulation Apply flipping algorithm on T \rightarrow output is Delaunay Each flip increases angles within quadrangle \rightarrow output has larger smallest angle

Euler formula

f: number of facets (except ∞) e: number of edges v: number of vertices

$$f - e + v = 1$$

Euler formula

f: number of facets (except ∞) e: number of edges v: number of vertices

$$f - e + v = 1$$

1 - 3 + 3 = 1

Euler formula

f: number of facets (except ∞) e: number of edges v: number of vertices

Euler formula f - e + v = 1

Triangulation

$$2e = 3f + k$$

$$f = 2v - 2 - k = O(v)$$

$$e = 3v - 3 - k = O(v)$$

Euler formula f - e + v = 1

Triangulation

2D Delaunay has linear size

$$2e = 3f + k$$

$$f = 2v - 2 - k = O(v)$$
$$e = 3v - 3 - k = O(v)$$

3D Delaunay can have quadratic size

• By point/sphere lifting, $|\text{Del}(P)| = |\text{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$

- By point/sphere lifting, $|\text{Del}(P)| = |\text{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$
- When d is even, point set P on moments curve $t \mapsto (t, t^2, t^3, \cdots, t^d)$ yields $|\text{Del}(P)| \ge |\text{Conv}(P)| = \Omega(|P|^{\lfloor \frac{d}{2} \rfloor}) = \Omega(|P|^{\lceil \frac{d}{2} \rceil}).$

- By point/sphere lifting, $|\text{Del}(P)| = |\text{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$
- When d is even, point set P on moments curve $t \mapsto (t, t^2, t^3, \cdots, t^d)$ yields $|\text{Del}(P)| \ge |\text{Conv}(P)| = \Omega(|P|^{\lfloor \frac{d}{2} \rfloor}) = \Omega(|P|^{\lceil \frac{d}{2} \rceil}).$
- When d is odd, take point set P^* on trigonometric curve $t \mapsto \frac{2}{d+1}(\cos t, \sin t, \cos 2t, \sin 2t, \cdots, \cos \frac{d+1}{2}t, \sin \frac{d+1}{2}t) \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ yields $|\operatorname{Conv}(P^*)| = \Omega(|P^*|^{\lfloor \frac{d+1}{2} \rfloor}) = \Omega(|P^*|^{\lceil \frac{d}{2} \rceil}).$ $\to \operatorname{map} P^*$ onto unit paraboloid via radial projection, then down to $P \subset \mathbb{R}^d$.

- By point/sphere lifting, $|\text{Del}(P)| = |\text{Conv}(P^*)| = O(|P|^{\lfloor \frac{d+1}{2} \rfloor}) = O(|P|^{\lceil \frac{d}{2} \rceil})$
- When d is even, point set P on moments curve $t \mapsto (t, t^2, t^3, \cdots, t^d)$ yields $|\text{Del}(P)| \ge |\text{Conv}(P)| = \Omega(|P|^{\lfloor \frac{d}{2} \rfloor}) = \Omega(|P|^{\lceil \frac{d}{2} \rceil}).$
- When d is odd, take point set P^* on trigonometric curve $t \mapsto \frac{2}{d+1}(\cos t, \sin t, \cos 2t, \sin 2t, \cdots, \cos \frac{d+1}{2}t, \sin \frac{d+1}{2}t) \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ yields $|\operatorname{Conv}(P^*)| = \Omega(|P^*|^{\lfloor \frac{d+1}{2} \rfloor}) = \Omega(|P^*|^{\lceil \frac{d}{2} \rceil}).$ $\to \operatorname{map} P^*$ onto unit paraboloid via radial projection, then down to $P \subset \mathbb{R}^d$.

Size of Delaunay of n points in \mathbb{R}^d : $\Theta(n^{\lceil \frac{d}{2} \rceil})$

Computing Delaunay

- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- \rightarrow direct extension of Graham's algorithm ([H.-P. Seidel]): $O(n^{\lceil \frac{d+1}{2}\rceil} + n\log n)$
- \rightarrow randomized incremental algorithm ([Clarkson, Shor]): exp. $O(n^{\lceil \frac{d}{2} \rceil} + n \log n)$
- \rightarrow de-randomized incremental algorithm ([Chazelle]): $O(n^{\lceil \frac{d}{2}\rceil} + n\log n)$

- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- 2. Incremental algorithm ([Boissonnat et al.])

 $\rightarrow O(n^{\lceil \frac{d+1}{2}\rceil} + n\log n)$ with deterministic point insertion order

 \rightarrow exp. $O(n^{\lceil \frac{d}{2}\rceil} + n\log n)$ with randomized point insertion order

- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- 2. Incremental algorithm ([Boissonnat et al.])
- 3. Divide-and-conquer algorithm [Guibas, Stolfi]
 - \rightarrow only in the plane or in 3-space

 \rightarrow optimal $O(n\log n)$ in the plane and $O(n^2)$ in \mathbb{R}^3

- 1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there
- 2. Incremental algorithm ([Boissonnat et al.])
- 3. Divide-and-conquer algorithm [Guibas, Stolfi]
- 4. Plane-sweep algorithm [Fortune]
 - \rightarrow in the plane only
 - \rightarrow computes Voronoi diagram
 - \rightarrow optimal $O(n\log n)$ time

1. Lift P to \mathbb{R}^{d+1} and compute lower convex hull there

2. Incremental algorithm ([Boissonnat et al.])

3. Divide-and-conquer algorithm [Guibas, Stolfi]

(today)

4. Plane-sweep algorithm [Fortune]

Computing Delaunay in the Plane

Lower bound

Delaunay can be used to sort numbers

Delaunay can be used to sort numbers

Take an instance of sort Assume one can compute Delaunay in \mathbb{R}^2 Use Delaunay to solve this instance of sort

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$, to be sorted

$\Rightarrow f(n) \in \Omega(n \log n)$

Computing Delaunay

Incremental algorithm

• Find triangles in conflict with \boldsymbol{p}

- Find triangles in conflict with p
- Delete triangles in conflict

- \bullet Find triangles in conflict with p
- Delete triangles in conflict
- Re-triangulate hole w.r.t. p

Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)

 $\forall x \in \text{conflict zone, all triangles inter$ sected by <math>[p, x] are in conflict with p

(same proof as for locally Del. \Rightarrow globally Del.)

Why it works

Property 1: the conflict zone is starred with respect to p (hence connected)

- \rightarrow can be computed by a traversal in the dual graph from some $\sigma \ni p$
- \rightarrow can be re-triangulated by join products $p\ast\sigma$ for each σ on its boundary

Why it works

Property 3: every new Delaunay simplex is incident to p

 \rightarrow re-triangulation by join products with p is Delaunay

Complexity analysis

 $n \text{ points} \Rightarrow n \text{ insertions}$, each of which is composed of:

- locate: O(n) naive, $O(n^{1/d})$ with random line walk, $O(\log n)$ with hierarchy.
- bfs in conflict zone: $O(d_i)$, where d_i is the number of deleted cells at i-th iteration.
- star conflict zone: $O(c_i)$, where c_i is the number of created cells at i-th iteration.

 \Rightarrow total complexity = $O(n \log n + \sum_{i=1}^{n} (c_i + d_i))$

Complexity analysis

 $n \text{ points} \Rightarrow n \text{ insertions}$, each of which is composed of:

- locate: O(n) naive, $O(n^{1/d})$ with random line walk, $O(\log n)$ with hierarchy.
- bfs in conflict zone: $O(d_i)$, where d_i is the number of deleted cells at i-th iteration.
- star conflict zone: $O(c_i)$, where c_i is the number of created cells at i-th iteration.
- \Rightarrow total complexity = $O(n \log n + \sum_{i=1}^{n} (c_i + d_i))$

boundary of conflicts zone is homeomorphic to a (d-1)-sphere since the conflict zone is starred w.r.t. $p \Rightarrow c_i, d_i = O(i^{\lceil \frac{d-1}{2} \rceil})$ by a variant of Upper Bound Theorem [Stanley 75].

$$\Rightarrow$$
 total complexity = $O(n \log n + n^{\lceil \frac{d+1}{2} \rceil})$

(sub-optimal in even dimensions only)

(can be improved to exp. $O(n \log n + n^{\lceil \frac{d}{2} \rceil})$ if random insertion order can be used)

The Guibas/Stolfi variant in 2D

• Locate point in triangulation

The Guibas/Stolfi variant in 2D

- Locate point in triangulation
- Star triangle

Computing Delaunay triangulations in the plane

Division – Fusion

L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans. on Graphics, 4(2):74–123, April 1985

Division-Fusion

Classical approach example: sort

Problem of size n

 \rightarrow division into 2 pbs of size O(n/2)

 \rightarrow recursive call on sub-problems

 \rightarrow fusion

Division-Fusion

Classical approach example: sort

Problem of size n

 \rightarrow division into 2 pbs of size $O\left(n/2\right)$ O(n)

 \rightarrow recursive call on sub-problems $2 f\left(\frac{n}{2}\right)$

 $\rightarrow \underset{O(n)}{\mathsf{fusion}}$

Division-Fusion

- Classical approach example: sort Problem of size n $f(n) = O(n) + 2f(\frac{n}{2})$ $= O(n \log n)$
 - \rightarrow division into 2 pbs of size $O\left(n/2\right)$ O(n)
 - \rightarrow recursive call on sub-problems $2 f\left(\frac{n}{2}\right)$
 - $\rightarrow \underset{O(n)}{\text{fusion}}$

Division Fusion

Division Fusion

Division Fusion

first red vertex crossed by pencil of circles

Complexity of Fusion

At each step of the search for r_{next} A red edge is deleted

At each step of the search for b_{next} A blue edge is deleted

After the choice between r_{next} and b_{next} A black edge is created

Complexity of Fusion

Complexity of Fusion

Complexity \leq # red edges +# blue edges +# black edges $\leq 3\frac{n}{2} + 3\frac{n}{2} + 3n = O(n)$

each colored triangulation has $\leq 3k$ edges, where k is the size of the subset of vertices the black edges are Delaunay \Rightarrow there are at most 3n of them

Overall Complexity

$$\label{eq:def-Division} \begin{split} \mathsf{Division} &= O(k) \text{ on sub-problem of size } k \\ &+ O(n \log n) \text{ preprocessing} \end{split}$$

Fusion = O(k) on sub-problem of size k

 $\mathsf{Division}\text{-}\mathsf{Fusion} \Longrightarrow O(n\log n)$

Generalizations

Q Nearest neighbor of q among S

Q Nearest neighbor of q among S

Change ambient space (for q) $I\!\!R^2 I\!\!R^3 I\!\!R^d$

Q Nearest neighbor of q among S

Change metrics Euclidean L_2 L_1, L_∞, L_p hyperbolic

additive weights multiplicative weights

Q Nearest neighbor of q among S

Change universal set $\supset S$ points of $I\!\!R^d$ segments of $I\!\!R^d$ spheres of $I\!\!R^d$

Exotic metrics

query

• •

query

query

Norm L_{∞} : max(|x|, |y|)Voronoi diagram

• 2

•2

circular bisector

disconnected cell

•	
•	
•	
•	
•	
•	
•	

quadratic size

nearest segment

parabolic bisector

